Command and Control for Simulated Air Agents Johnathan M. Gratch University of Southern California Information Sciences Institute 4676 Admiralty Way Marina del Rey, CA 90292 gratch@isi.edu Also: Randy Hill, Paul Rosenbloom (PI), Milind Tambe U of Michigan: John Laird (PI) # Outline - * Command forces for rotary-wing attack missions - * Development of RWA Company Commander - * Focus primarily on mission planning - * C3 for Fixed-wing air-to ground missions - * Development of C3 nodes: - Ground Controller (GCI, TACC, TAD) - Forward Air Controller (FAC) - Airborne Early Warning (AWACS, E2C) - * Focus on run-time assessments and resource allocation - * All entities implemented in Soar architecture # Overview of Soar - * High-level: Rule-based system - * Provides basic architectural support for (and integration of): - * Knowledge representation rules and (simple) objects - * Decision making integration of preferences from rules - * External interaction I/Q through object passing - * Reactivity I/Q is within inner loop of decision making - * learning chunking of new rules from experience - * Psychological modeling time scales # **SOAR** Applications - * General approach to planning and simulation - * Rotary-wing Commander simulation (in DIS) - * Navy Fixed-wing Pilot simulation (in DIS) - * Navy C3 - * Firefighter virtual training environment - * Natural Language understanding/protection - * Cognitive Modeling - * Supported by large research community # Resources #### * ModSAF For entity simulation and low-level behavior #### * SOAR For entity high-level behavior Each entity controlled by knowledge-base of 2000 rules Capable of planful and reactive behavior ### * CFOR (Mitre) - * CCSIL for inter-agent communication - * EU- for terrain reasoning - * Platform Services for Commander's vehicle sensing # PART I: CFOR - Goals - * RWA Company command entity in ModSAF SCOPE: - * Attack mission - * Security mission - * Reconnaissance mission - * Battalion command entity - * Scope not yet determined - * Still in early stages of development # CFOR Capabilities ## * Inter-agent communication Receive operation orders and situation reports synchronize with other units (e.g. fire support, \mathring{A} \mathring{C}) #### * Real-time assessment of battlefield on-board sensors remote sensors inference of enemy intent - * Planning and Re-planning based on current situation - * Terrain Reasoning # Typical Scenario ### * Entities: Live Battalion Commander SOAR/CFOR Company Commander 5 SOAR/IFOR RWA"s ModSAF OPFORs ### * Battalion order given to SOAR/CFOR: Advance along Axis OSHKOSH Attrit Tank Battalion in engagement area BRAVO Obey A²C² ### *** SOAR/CFOR** elaborates mission Identify target priorities, firing positions... * SOAR/CFOR monitors execution and replans as necessary # Typical Plan # Architecture # Knowledge Representation - * Mission planning and monitoring guided by explicit mission representation shared at all levels - * Roughly equivalent to CCSIL operations order - * SITUATION: description of enemy forces, their location, and intents, plans of superior units - * MISSION: sequence of tasks - * EXECUTION: subordinate plans, coord. information - * COMMAND AND SIGNAL - * Etc. - * New information (e.g. Sit Reports) modifies this structure to facilitate dynamic decision making # Mission Planning #### * GIVEN - * CCSIL Bn Order specifying abstract mission spec. - * Refinement "templates" for elaborating spec. (rules) - * "Standard Operating Procedures" for missing fields (rules) - * Generate CCSIL Co Order - * Annotate mission representation with dependency information - * Preconditions and effects associated with tasks - * Refinement assumptions added - * Timing constraints computed and attached # Mission - - * help recognize plan inconsistencies - * help propagate the effects of new information - * e.g. tasks are eliminated if their preconditions/assumptions become violated # Example # Layered Approach # Simulated Battle Context ### * Level of decision Representation - * Company commander in charge of 2-8 RWAs - * goal of Battalion commander in charge of 2-3 co - * No long term predictions or resource management ### * Representation of Current Battle State - * Maintained in mission structure Determined by OpOrder, platform sensors, sit. reports - * Parameters; type/location of friendly/enemy units # Simulated Battle context # * Representation of Friendly Battle Plan - * Entities represent Operations Order received via CCSIL - * Represented as data structures in rule-based system ### * Representation of Enemy Objectives - * As given in operations order - * Limited abilities to infer if enemy is a threat - * New enemy can be identified through sensors # **Decision Process** #### * Assessment of Current/Future Status - * Commander objectives represented explicitly in op order - * Rules attempt to correlate sensors with objectives - * Projection limited to time/place incompatibilities #### * Decision Actions - * Actions are transmitted via CCSIL - * Represented in explicit mission structure # **Decision Process** ## * Dynamic/Reactive Decision Making - * Entities react immediately to sensor inputs - * Command entity responds to changes in mission structure - * Replans as necessary to maintain integrity of plan #### * Doctrinal Context - * doctrine is represented implicitly Agents only represent doctrinally correct responses - * Architecture supports explicit representation Could be expressed as rules that discard non-doctrinal actions # Simulated Support ### * Sensor support - * Sensors provide location, numbers, types, bearings - * Intent must be inferred from sensors # * Information operation activities * Friendly activities monitored via sensors and CCSIL New information has impact if it violates underlying plan # Architectural Aspects #### * Command levels at which Live Staff can be used - * Company Commander or above - * Required at Battalion command and above - * Extending simulation vertically ### * Required Levels of Fidelity * all entities simulated at individual unit level commander could be applied to aggregate entities requires CCSIL # Other Issues ### * Primary Issues - * Representing plan assumptions and dependencies - * Recognizing when dependencies are violated - * Representing and selecting multiple courses of action #### * Research areas - * Modeling enemy intent - * "war gaming" plans to recognize bottlenecks, brittleness - * Learning/explaining plan failures # Part II: C3 - Goals # * FWA Development of C3 nodes SCOPE: - * Individual aircraft (F14, F18) - * Section/Division/Package air lead - * Ground controller (GCI, TACC, TAD) - * Forward Air Controller (FAC & FAC(A)) - * Airborne Early Warning (AWACS, E2C) - * In support of Air-to-ground missions # C3 Capabilities - * Inter-agent communication communications via simulated radio direct units and receive responses - * Real-time assessment of battlefield on-board sensors (visual, radar, radio) inference of enemy intent - * Direct subordinate units according to some prestated mission specification - * Each platform implemented in ModSAF of lowlevel - High-level controlled by Soar/IFOR # Simulated Battle Context ### * Level of Decision Representation - * Individual, Section, Division, Package - * Air controller - * No long term predictions or resource management ### * Representation of Current Battle State - * Depends on entity Some use only radio reports (TACC and TADD) - * Most combine radio, radar, visual - * Parameters: type, position, heading, speed, altitude # Simulated Battle Context # * Representation of Friendly Battle Plan - * Complete representation of own mission little about others - * Represented as data structures in rule-base system # * Representation of Enemy Objectives - * Limited to whether enemy is threat or not - * Some threats known, others identified through sensing or radio # **Decision Process** #### * Assessment of Current/Future Status - * Rules attempt to correlate sensors with objectives - * No attempt to project future status #### * Decision Actions * Decisions performed by acting radio messages # **Decision Process** # * Dynamic/Reactive Decision Making - * Entities react immediately to sensor inputs - * Few actions preplanned most in response to current sit. - * Much of plan representation is implicit in rule structure #### * Doctrinal Context - * Doctrine is represented implicitly - * Agents only represent doctrinally correct responses - * Architecture supports explicit representation - * Could be expressed as rules that discard non-doctrinal actions # Simulated Support # Sensor support - * Sensors provide location, numbers, types, bearings - * Intent must be inferred form sensors # * Information operation activities * Friendly activities monitored via sensors and radio Decision are responsive to those changes (e.g. lead killed) # Architectural Aspects - * Command levels at which Live Staff can be used - * Humans can be used for any of the command levels - * All control must happen through simulated radio - * Required Levels of Fidelity - * all entities simulated at individual unit level # Other Issues # * Primary Issues - * Capturing appropriate doctrine - * Handling real human communication #### * Research areas - * Natural Language processing and speech understanding - * Spatial reasoning for battle planning